o Technical
- Paper
-7 2957

o .~ November 1989

"NASA

- T

Fortran Program for
X-Ray Photoelectron
Spectroscopy Data
Reformatting

/‘; r |

Phillip B. Abel

(HATA) 1T) - Uncl s
MY/ 0n w2 asId

NASA
Technical
Paper
2957

1989

NANASAN

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Division

Fortran Program for
X-Ray Photoelectron
Spectroscopy Data
Reformatting

Phillip B. Abel
Lewis Research Center
Cleveland, Ohio

Summary

A Fortran program has been written for use on an IBM
PC/XT or AT or compatible microcomputer (personal
computer, PC) that converts a column of ASCII-format
numbers into a binary-format file suitable for interactive
analysis on a Digital Equipment Corporation (DEC) computer
running the VGS-5000 Enhanced Data Processing (EDP)
software package. The incompatible floating-point number
representations of the two computers were compared, and a
subroutine was created to correctly store floating-point
numbers on the IBM PC, which can be directly read by the
DEC computer. Any file transfer protocol having provision
for binary data can be used to transmit the resulting file from
the PC to the DEC machine. The data file header required
by the EDP programs for an x-ray photoelectron spectrum is
also written to the file. The user is prompted for the relevant
experimental parameters, which are then properly coded into
the format used internally by all of the VGS-5000 series EDP
packages.

Introduction

An increasing number of sophisticated surface analysis
systems are today controlled by computers that provide the
operator with not only an easier task in running the equipment
but also, in some cases, with integral data analysis capabilities.
The ability to perform the data analysis interactively with a
color graphics display speeds the process considerably when
compared with batch job processing. Interactive analysis also
allows the researcher to watch for spurious data that might
go undetected when some form of automatic spectrum
processing is used.

The commercial data analysis package acquired by our
research group was a VGS-5000 system running the Enhanced
Data Processing (EDP) software. This software can perform
peak synthesis, peak deconvolution, background subtraction,
peak areca measurement, data smoothing, differentiation and
integration, spike removal, and satellite subtraction, as well
as provide spectrum overlays, montage plots, and expanded
viewing areas on the graphics terminals. The desirability of
“‘importing’" data from other similar experimental systems
quickly became apparent. In particular, we had an older x-ray
photoelectron spectroscopy (XPS) system that could digitally
store data but had only limited data analysis software.

Additionally, in order to test the performance of the data
analysis routines. a means of creating controlled test data files
was needed. This report details the methods used to create
EDP-compatible files from externally generated data.

A recent publication (ref. 1) details the results of the
Versailles Project on Advanced Materials and Standards
(VAMADS) Surface Chemical Analysis group effort to produce
the Standard Data Transfer Format. The need for a standard
exchange format for surface analysis data is exemplified by
the desirability of using a second computer to analyze data
captured by a dissimilar computer. The VAMAS Standard
Data Transfer Format uses only ASCII code characters (ref. 2)
and provides for a wide range of surface analysis techniques.
The type of information contained in the EDP file header
closely parallels the VAMAS standards, although the information
is stored in a more space-efficient binary form. Unfortunately,
a program to convert ASCII format data to binary is not yet
available for the EDP software. The program described herein
is a limited start toward that goal for one analysis technique
(XPS) and could be modified to parse for the VAMAS code
words rather than requiring keyboard input of experimental
parameter values.

Methods

Hardware and Communications

The computer that was purchased to run our data analysis
software was a multiterminal, multiuser system with eight
RS-232C serial ports. It had no programming language other
than the assembly language native to the machine. In order
to import data, any of the unused serial ports could have been
connected to a modem or, as was done, connected directly
to another computer via a null-modem serial cable. Direct
connection avoids the potential for unauthorized computer
access over the telephone lines, and in our case allowed the
second computer to be used as another data analysis
workstation because the short serial cable permitted a higher
communication speed than is typically possible over telephone
lines. Painting a screen full of graphics usually involves many
more characters to be sent than does a simple display of text.
The higher communication speed therefore made practical the
use of graphics terminal emulation software on the second
computer. A number of graphics terminal emulation programs
exist for the IBM PC/XT or AT and compatible microcomputers

(personal computers, PC), depending upon the graphics display
hardware present. Whether or not they have graphics capability,
most terminal emulation programs come with built-in data
transfer protocols such as Kermit and XMODEM.

For file transfer, the set of public domain programs that
implement the Kermit protocol has been chosen for use in our
laboratory, in part because versions are available both for the
Digital Equipment Corporation (DEC) PDP-11/73 running the
Micro-RSX operating system as well as for the PC.! The
protocol allows transmission of eight-bit binary (nontext) files,
even over serial lines configured for seven-bit data. Although
the Kermit program for the PC does not support emulation
of DEC color graphics terminals and cannot be used with the
EDP interactive data analysis routines, it does emulate the
DEC VTI102 terminal, which the Micro-RSX operating system
recognizes. Additionally, all of the DEC color graphics terminal
emulation programs known to the author do support file
transfer via the Kermit protocol. If the PC were to be used
as an interactive data analysis terminal, the Kermit protocol
on the DEC machine would still be usable for file transfer.
Other methods of binary file transfer, such as transfer over
some form of local area network, can also be implemented,
with potentially significant improvements in data transmission
rate over that of a serial port. However, in most cases, the
Kermit protocol should prove adequate.

Language

The Fortran language on the PC was chosen to reformat the
external data for importation into the EDP software. Fortran
remains a computer language familiar to most scientists and
engineers and is available on microcomputers at many facilities.
A Fortran compiler could be purchased for use on the DEC
machine also. This would avoid the problem of incompatible
floating-point number representations. In general, however,
the prices of language compilers for small, single-user
microcomputers are significantly less than those for multiuser
computer systems, and a relatively simple, general-purpose
subroutine solves the incompatible floating-point number
problem.

Input Files

As written, the data-reformatting program uses an example
data header file stored under the name TEMPLATE.XPS on
the PC (see the appendix for an explanation of the data file
header). An initial source for this file can be any EDP data
file from an experiment similar to the type of data being imported.
Downloading a binary data file from the DEC machine to the

'For information about Kermit documentation, updates, lists of current
available versions, and ordering information, write to Kermit Distribution,
Columbia University Center for Computing Activities, 612 West 115th Street,
New York, NY 10025 (USA).

PC can serve also as a first check to determine whether the
data transfer protocol is functioning properly. If for some
reason it is not possible to download this file, another
alternative (strongly discouraged by the author) is to use the
information about the header in the appendix and the
DEBUG.COM program on the PC to create the initial
TEMPLATE.XPS data header file.

The input data file used by the program is no more than
a text file in the form of a column of ASCII numbers, with
each value followed by a carriage return. These can be the
output of a data collection routine or can even be keyed in
through the use of a program editor. By modifying the data-
reading portion of this program, almost any input data format
can be accommodated. For instance, the file from a spreadsheet
*‘print to disk’’ operation could also be accepted. Once the
PC has a value stored internally as a floating-point number,
whether from text or even binary number input, the conversion
from PC to DEC binary format is straightforward. As written,
the program treats the first input file entry as the number of
data values to follow in the file. The user is prompted for the
rest of the spectrum parameters when the program is run.

Formats

Floating-Point Numbers

For creating files to be read unaltered by computers of
different manufacturers with different operating systems and
machine architectures, the first discussion should be of numeric
representation formats. How do the binary digits, or bits, stored
in a binary data file correspond to the values used by a
program? A cursory discussion of the ANSI/IEEE Standard
754-1985 for 32-bit floating-point number representation
(fig. 1) follows.

The most significant (left-most) bit gives the sign, with a
0 indicating a positive number and a 1 indicating a negative
number. The next eight most significant bits are an exponential
factor, or multiplier, for the fractional part of the number
represented by the remaining 23 bits. In order to have both
positive and negative exponents, the eight-bit exponent that
is stored is offset by 127, which is approximately half of the
maximum value an eight-bit number can have. The exponent

sl fe] (m}
O K XX XXX XK XXX X XXX XXX KAX K
Byte 1 Byte 2 Byte 3 Byte 4

ANSVIEEE: Value = (-1){8] . 2(le] =127} | [y m
DEC: Value = (-1){8] . 2((e]-128) . 0.1

Figure 1.—Thirty-two-bit floating-point number representations. Each *‘x’’
represents one binary digit, either a 0 or a 1. Numbers enclosed in square
brackets are in binary form.

factor can effectively range from 2 ~'?7 to 2'%%. In order to
use the exponent, the value 127 (the offset) must first be sub-
tracted from the value actually stored. The mantissa. or
fractional part of the floating-point number, is stored in a
“*hidden bit normalization’’ form. The mantissa is normalized
by shifting the magnitude of the fractional part and then adjusting
the value of the exponent until the most significant binary digit
of the mantissa is a 1. This preserves maximum accuracy in
representing the fractional part of the number by preventing
leading zeros. Since the first bit of every fraction is a 1, there
is no need to actually store that digit. This convention increases
the accuracy by one bit. The leading bit is not assumed to be
a 1 only when the exponent is 0. This corresponds to the
smallest floating-point numbers that can be represented. There
need not be concern about special cases for this discussion.

The differences between the IEEE and DEC PDP-11
floating-point representations are the offset used for the
exponent and the assumed magnitude of the mantissa. DEC
uses an exponent offset of 128 rather than 127, thereby giving
the exponent a range from 2712 t0 2'Y. This differs from
the IEEE format by a factor of 2. The DEC format also
assumes a mantissa of the form 0.1xxx..., where each *‘x”’
represents one of the 23 least significant binary digits of the
32-bit floating-point number (each *‘x’’ is either a 1 or a 0).
The IEEE assumed representation is of the form 1.xxx.... The
DEC format differs from the IEEE again by a factor of 2. In
both representations, the leading 1 is assumed and need not
be stored, leaving 23 bits to represent the rest of the mantissa,
denoted here by x. In order to convert a number from the IEEE
representation to the DEC form, both a shift in the implied
mantissa value and an increase of the exponent must occur.
Both changes can be accomplished by multiplying the IEEE
representation by a factor of 4 to obtain the DEC representation.

The final floating-point number issue that must be addressed
is the manner in which the numbers are stored in a file. If
the 32 bits of a floating-point number are divided into four
groups of eight bits each, or bytes, the most significant (left-
most) eight bits can be arbitrarily called “*byte 1'"; the next
most significant eight bits (bits 23 through 16), *‘byte 2°": and
so on (fig. 1). Apparently because of the internal architectures
of the two types of machine, the most efficient method of
storage for each machine involves a different byte ordering.

For the Intel 80x86 processor-chip based machines (8086,
8088, 80286, or 80386, i.e., IBM PC/XT or AT and compati-
bles), the first byte sequentially stored in a file is byte 4,
followed by byte 3, byte 2, and finally, byte I. This byte
ordering is used in each of the languages checked by the
author.

Binary floating-point number files from the following languages were
available to the author: Lahey Fortran, Microsoft Fortran, Microsoft
QuickBASIC 4.0, and Borland Turbo Pascal (on a PC with mathematic
coprocessor chip installed). Turbo Pascal, in particular, may use its own <8-bit

The DEC machine, originally based on a 16-bit bus architec-
ture, reverses every pair of bytes, storing them sequentially
in the order: byte 2, byte 1, byte 4, and finally, byte 3. The
difference between the two types of machine requires only that
the pair of bytes 2 and 1 be shifted in front of the pair of bytes
4 and 3 for the change from 80x86 to PDP-11 byte ordering.
In Fortran, an easy method of accomplishing the byte swap
uses an EQUIVALENCE operation between a REAL*4
variable and an INTEGER*2 variable array. The two
INTEGER*2 values are exchanged and the resulting modified
REAL*4 variable can then be stored on disk. Because both
machines reverse the byte order for two-byte numbers,
standard 16-bit integers can be passed unaltered between the
two types of computer.”

Output Files

In order to be used with the EDP software, an external data
file must not only present readable numbers, but must also
incorporate any file headers or other information expected by
the analyzing routines. The following discussion is a short
overview of the data file structure written and read by the EDP
software on the VGS-5000 series of systems.

Files on the DEC PDP-11/73 computer are usually stored
in units of “*blocks,”” each 512 bytes in size. Each EDP data
file has at least a four-block information section ahead of the
actual data. The header information is needed because data
files from a number of different experimental techniques, as
well as multiregion and depth profile data, can be analyzed
with the EDP software. The files produced by the routine
reported here are in the form of a single-spectral-region,
binding-energy-scan XPS spectrum. Comments are included
in the source code, which should allow easy expansion of the
program to certain other types of data file. Each block of the
file header is detailed byte by byte in the appendix.

The first block of the file header provides general
information about the data file, such as how many spectral
regions are present and how large they are. The second block
provides space for region names up to the maximum number
of regions allowed, although only single-region files are
created by this program. Up to three lines of descriptive
comment can be stored in the third file header block. The
fourth header block, describing the data immediately following
it, contains information about the experimental technique and

floating-point number representation on machines not equipped with the
coprocessor chip. Therefore, care should be exercised if the algorithm
presented herein is rewritten in Pascal. Fortran compilers not listed here
presumably use the machine-efficient byte ordering called for by either an
8087 or an 80287 coprocessor, whether a coprocessor chip is present or not.
However, the byte order of a test file should be checked before trying to use
this program unmodified with other Fortran compilers on a PC.

3The program ASCITOVG is available from COSMIC. University of
Georgia, Athens, GA.

conditions such as the type of scan, the range of the scan, the
excitation source, and the analyzer mode. This header block
would recur once for each spectral region in a multiregion file.
It is located directly ahead of the data blocks that it describes
and separates them from the data of preceding regions. The
fifth and all subsequent blocks in a single-region file contain
the four-byte data values, stored 128 to the block.

The Fortran program itself can be described in terms of a
few basic functions. After checking for the header file
TEMPLATE.XPS in the PC default directory, the program
prompts the user for input and output file names to use (with
or without path names) and opens the files. The number of
input points is read, and the minimum and maximum input
values in the file are found. The user is then prompted for
information such as the starting and ending scan energies, the
electron analyzer pass energy, the excitation source, the dwell
time, and the number of combined (integrated) scans making
up the data. The user is also asked for the time and date that
the data were collected and is allowed to enter descriptive
comments that will appear in plots of the spectrum. The actual
reformatting of the data is then performed to finish the process.

Summary of Results

The incompatible floating-point number representations of
a personal computer (PC) and a Digital Equipment Corporation
(DEC) computer were compared, and a Fortran subroutine
was created to correctly store single-precision, floating-point
numbers on the PC that can be directly read by DEC
computers. A Fortran program using this subroutine was
written on the PC to convert a column of ASCII-format
numbers into a binary-format file suitable for interactive
analysis with the VGS-5000 Enhanced Data Processing (EDP)
software package. More difficult than the reformatting of
floating-point numbers was the creation of the exact data file

header required by the EDP programs for an x-ray photoelectron
spectrum. Experiment parameters, entered by the program
user, are coded into the header format used internally by all
of the VGS-5000 series EDP packages. Whether for externally
captured data or for user-generated test data, the files created
by the program described here should be useful on any of the
VGS-5000 series interactive analysis workstations.

Interested VGS-5000 users may send the author a blank,
formatted, 5.25-in. IBM PC/XT or AT compatible floppy
diskette for a copy of the program source code, executable
program file, and example header file. The program should
also soon become available through the COSMIC software
service operated for NASA by the University of Georgia (call
(404) 542-3265 for further information).

Acknowledgments

The author would like to thank Daniel L. Whipple of NASA
Lewis for providing a set of data-handling subroutines useful
in transferring data between any of the many machines at
NASA Lewis, including Cray, IBM, VAX, Alliant, Sun, Silicon
Graphics, and personal computers. Although replaced by a
single-purpose subroutine herein, the general-purpose
subroutines were most helpful in a first version of this
program. The suggestions and patience of Donald R. Wheeler,
Pierre Steinmann, Douglas Jayne, and Frank S. Honecy of
NASA Lewis while the computers were tied up are appreciated.
The author would like to thank VG Scientific for providing
extensive information about their data file header format.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, July 13, 1989

APPENDIX—DESCRIPTION OF DATA FILE HEADER

In the following description of the data file header, data
values are presented in hexadecimal (base 16 numbers) form.
All hexadecimal numbers are underlined for clarity. Each
hexadecimal digit represents four bits, requiring then only a
two-digit hexadecimal number for each byte. The following
is a comparison of equal values in hexadecimal (base 16),
decimal (base 10), octal (base 8), and binary (base 2) number
representations:

Hexadecimal: 1 2 3 4 5 6 7 8
Decimal: 1 2 3 4 5 6 7 8
Octal: 1 2 3 4 5 6 7 10
Binary: 0001 0010 0011 0100 010l 0110 Oill 1000
Hexadecimal: 9 A B C D E F 10
Decimal: 9 10 11 12 13 14 15 16
Octal: 11 12 13 14 15 16 17 20
Binary: 1001 1010 1011 1100 1101 1110 1111 10000
Sequentially, from the beginning of the data file:
Block 1
Bytes Description
1-2 FF FF; two-byte integer, value always equals
=1, Check_Word!
3-4 FF FF; two-byte integer, value always equals
—1, Check_Word2
5-6 01 00; two-byte integer, with value of I;
version number, This_Version
7-8 03 00; two-byte integer, with value of 3;

number of blocks in this file header,
File_Header_Size

9-20 00 00; six two-byte integers, each with value
of 0, Spare_Array

21-22 01 00; two-byte integer, with value of 1;
number of spectral regions up to the
maximum (32), always equals 1 as written by

this program, No_of_Regions

23-24 two-byte integer number giving the number of
512-byte data blocks in the first region (128

data values per block), Region_Size

25-26 01 00; two-byte integer, value always equal to
1 in this program; number of blocks in region

descriptor, Region_Header_Size

27-28 01 00; two-byte integer, value always equal to

1 in this program, Region_Header_Id

29-34 repeat of bytes 23 —-28 but for second data
region, all values equal to 0 for one-region

file created by this program

35-214 repeat of bytes 2328 but for data regions 3
through 32; all values equal to 0 for the one-

region file created by this program

215-216 01 00; two-byte integer, value always equal to
1 in this program; number of depths at which

spectra exist, No_of_Levels

217-218 01 00; two-byte integer, value always equal to

1 in this program, No_of_Stages

Additional byte values as follows:

219-220 31 00

221-236 02 00 01 00 26 20 20 20 AE 9C CA 7F 00 00
2E 87; first element of Index_Entry_Array

237-252 03 00 01 00 27 20 20 20 AE 9C CA 7F 00 00
2E 87; second element of Index_Entry_Array

253-254 04 00; beginning of third element in array

255-256 two-byte integer giving the total number of
512-byte data blocks in the entire file,
including all regions, same as bytes 23 and 24
above for the one-region files written by this
program

257-268 21 20 01 00 01 80 01 00 00 00 01 84

269-284 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 53

285-476 repeat of bytes 269 to 284 twelve more times

477-512 FF FF; repeated values of —1

Block 2

Bytes Description

1-2 05 00; two-byte integer, value always equals
3, identifies this as the Region Name
Information block

3-17 up to 15-byte-long region name for first
region using standard ASCII characters,
unused bytes equal to the ASCII ‘‘space™
character, hexadecimal 20

18-482 20; region names for regions 2 through 32,

unused in this program, each 15 bytes in
length, each byte equal to the ‘space’
character

Additional byte values as follows:
483-496 01 00 56 A2 40 82 50 53 20 20 20 20 20 20
497-512

Block 3
Bytes
1-2

3-4
5-6
7-8
9-10
11-12

13-14
15-16
17-56

57-96
97-136

137-176
177-216

217-482

Description

02 00; two-byte integer, value always equals
2, identifies an Information block

two-byte integer, day of the month data taken
two-byte integer, day of the week data taken
two-byte integer, month data taken

two-byte integer, year data taken

two-byte integer, hour of the day data taken,
military format from O to 23 hours

two-byte integer, minutes data taken
two-byte integer, seconds data taken

first 40-byte comment line, standard ASCII
characters, unused bytes equal to the ‘‘space’’
character, hexadecimal 20

20; 40 ASCII *‘space’’ characters

second 40-byte comment line, standard ASCII
characters, unused bytes equal to the ‘‘space™
character, hexadecimal 20

20; 40 ASCII “‘space” characters

third 40-byte comment line, standard ASCII
characters, unused bytes equal to the ‘space’
character, hexadecimal 20

20; ASCII ‘‘space’’ characters

Additional byte values as follows:

483-496
497-512

Block 4
Bytes
1-2

01 00 56 A2 40 82 50 53 20 20 20 20 20 20

Description

01 00; two-byte integer, value always equals
1, identifies block as Data Header, occurs at
beginning of each data region in multiregion
data file, occurs only once in data files
written by this program

00 00; two-byte integer, value always equals
0 here, identifies data as a spectrum

two-byte integer, gives the number of data
points in the data set, Number_of_Channels

four-byte REAL*4 number, starting electron
energy of spectrum, X_Start

four-byte REAL*4 number, ending electron
energy of spectrum, X_End

four-byte REAL*4 number, minimum data
value in any channel of the spectrum,
Y _Minimum

19-22

23-26

27

28

29-30

31-34

35-38

39-42

43-64

65-68

69-70

71-72

73

four-byte REAL*4 number, maximum data
value in any channel of the spectrum,
Y_Maximum

four-byte REAL*4 number, energy increment
between data points, X_Step

01; one-byte integer, value always equals 1 in
this program, indicates that the X-axis values
are ‘‘binding energy’’, X_Axis_Units

05; one-byte integer, value always equals 5 in
this program, indicates that the Y-axis values
(the data) are ‘‘Counts”’

Note that values for the X- and Y-axis units
are

00 Kinetic_eV (kinetic energy in electron
volts)

01 Binding_eV (binding energy in electron
volts)

02 AMU (atomic mass units)

03 Seconds

04 Degrees

05 Counts

06 Count_eV_per_seconds

07 CPS (counts per second)

01 00; two-byte integer, value always equals
1 in this program, No_of_Corresponding_Vars

four-byte REAL*4 number, value equals 0
here, Sensitivity_factor

four-byte REAL*4 number, value equals 0
here, Start_Profile_Range

four-byte REAL*4 number, value equals O
here, End_Profile_Range

00 00; zero values

four-byte REAL*4 number, gives the dwell
time per channel during each scan, in
milliseconds, Dwell_Time

00 00; two-byte integer, value always equals
0 in this program, Signal_to_Noise

two-byte integer, gives the number of scans
summed to produce the data set, No_of_Scans

00; one-byte integer, value always equals O in
this program, indicates that the number of
counts per channel were summed from scan to
scan, Point_Repeat

Note that values for the mode of channel
repetition are

00 Integrated
01 Averaged
02 Position_Sensitive

74

75

76
77-80

81-84

85

86
87-90

91-94

95

00; one-byte integer, value always equals 0 in
this program, indicates that the data are XPS
data, Type_of_Technique

Note that values for the technique are

00 XPS
01 Auger
02 UPS
03 LEELS
04 ISS

05 SIMS

00; one-byte integer, value always equals 0 in
this program, indicates that the analyzer mode
is constant analyzer energy (CAE), Analyzer_
Mode

Note that values for the analyzer mode are

00 CAE (constant analyzer energy)
01 CRR (constant retarding ratio)

00; zero-value byte

four-byte REAL*4 number, analyzer energy in
CAE mode, in electron volts, Analyzer_Value

four-byte REAL*4 number, work function of
the analyzer, in electron volts from the
vacuum level, Analyzer_Work_Function

one-byte integer, value equals either 0 or 1 in
this program, indicates the excitation source,
Source_Type

Note that values for the type of source are

00 Al

01 Mg

02 Ag

03 Au

04 Zr

05 Unknown_Source
06 Helium_1

07 Helium_2

08 Electrons

00; zero-value byte
00; four-byte REAL*4 number, value always
equals 0 in this program, Source_Strength

four-byte REAL*4 number, energy of the
excitation source in electron volts,
Source_Energy

00; one-byte integer, value always equals 0 in
this program, indicates the type of signal
collected, Signal_Mode_Type

Note that values for the types of signal are

00 Pulse_Counting
01 Differential
02 Analogue

96
97-100

101-104

105-108

109-112

113-116

117-120

121-124

125-128

129-132

133-136

137-140

141-155

156-195

196-235

236
237-244

245-252

253

00; zero-value byte

00; four-byte REAL*4 number, value always
equals O in this program, Modulation

00; four-byte REAL*4 number, value always
equals O in this program, Analyzer_Polar_Angle

00; four-byte REAL*4 number, value always
equals O in this program, Analyzer_Azimuth_
Angle

00; four-byte REAL*4 number, value always
equals O in this program, Sample_Polar_Angle

00; four-byte REAL*4 number, value always
equals O in this program, Sample_Azimuth_
Angle

00; four-byte REAL*4 number, value always
equals O in this program, Sample_Rotation_
Angle

00; four-byte REAL*4 number, value always
equals O in this program, Sample_X

00; four-byte REAL*4 number, value always
equals 0 in this program, Sample_Y

00; four-byte REAL*4 number, value always
equals 0 in this program, Sample_Z

00; four-byte REAL*4 number, value always
equals 0 in this program, Target_Bias

00; four-byte REAL*4 number, value always
equals 0 in this program, Sample_Charging

up to 15-byte-long region name using standard
ASCII characters, unused bytes equal to the
ASCII “‘space’” character, hexadecimal 20

20; 40-byte-long ASCII character label, all
bytes equal to the *‘space’” character in this
program, hexadecimal 20, Labell
20; 40-byte-long ASCII character label, all
bytes equal to the ‘‘space” character in this
program, hexadecimal 20, Label2

00; zero-value byte

00; two four-byte REAL*4 numbers, values
always equal O in this program, Labell_Position

00; two four-byte REAL*4 numbers, values
always equal O in this program, Label2_Position

00; one-byte integer, value always equals O in
this program, indicates the type of profile
taken, Profile_Type

Note that values for the types of profile are
00 Non_Profile
01 Cyclic_Etch_Time

02 Continuous_Etch_Time
03 Cyclic_Time

NASA Report Documentation Page

Nationa! Aeronautics and
Space Administrathon

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA TP-2957

4. Title and Subtitle 5. Report Date

Fortran Program for X-Ray Photoelectron Spectroscopy Data Reformatting November 1989

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Phillip B. Abel E-4867
10. Work Unit No.
506-43-11

9. Performing Organization Name and Address

.) o) 11. Contract or Grant No.
National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Paper

National Aeronautics and Space Administration 14. Spansoring Agency Code
Washington, D.C. 20546-0001

15. Supplementary Notes

16. Abstract

A Fortran program has been written for use on an IBM PC/XT or AT or compatible microcomputer (personal
computer, PC) that converts a column of ASCII-format numbers into a binary-format file suitable for interactive
analysis on a Digital Equipment Corporation (DEC) computer running the VGS-5000 Enhanced Data Processing
(EDP) software package. The incompatible floating-point number representations of the two computers were
compared, and a subroutine was created to correctly store floating-point numbers on the IBM PC, which can be
directly read by the DEC computer. Any file transfer protocol having provision for binary data can be used to
transmit the resulting file from the PC to the DEC machine. The data file header required by the EDP programs
for an x-ray photoelectron spectrum is also written to the file. The user is prompted for the relevant experimental
parameters, which are then properly coded into the format used internally by all of the VGS-5000 series EDP

packages.
17. Key Words (Suggested by Author(s)) 18. Distribution Statement
X-ray; Photoelectron spectroscopy; VG Escalab; Unclassified — Unlimited
Surface properties; VAMAS Subject Category 76
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*

Unclassified Unclassified 12 A03

NASA FORM 1626 OCT 86 *For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-Langley, 1989

BULK RATE
POSTAGE & FEES PAID
. NASA
- Pemmnit No. G-27

Ofticial Business
- Penaity tor Private Usd,

If Undetiverable (Section 158

POSTMASTER: b stal Manual) Do Not Return

T T NP

L

b el e

JUL Q9o L)

NASA SCIENTIFIC AND TECHNICAL DOCUMENT AVAILABILITY AUTHORIZATION (DAA) M
To be initiated by the responsible NASA Project Officer, Technical Monitor, 2 other appropriate (Facility Use Only)
NASA official for all presentations, reports, papers, and proceedings that o Main scientific X¥originat Control No
#(d technical information. Explanations are on the back of this ‘orm and & ~santed in O Moditied ’
. ~'Yesater detail in NHB 2200.2, “NASA Scientific and Technical information : mrw ~.7 Date

;1. DOC CTDENTIFICATION lncormationconmnodom'opoﬂdocummuuonpmmouwno(bonputodoxeop'm. date and contract numb«)_
Tite: %ﬁ‘f”ﬁ&ﬁ ﬁroqram or X-Ray Photoeiectron Spectroscopy Data Reformatting

Author(s): Phillip Abel _
Originating NASA Org : Lewis Research Center

Performing Organization (it different)

O m Date:

Documaent Number(s)

(For presentations or externalty o 3 # ion on the ded ication such as name, place, and date of conference. periodical or journal title,
e ite and publisher WASK ‘P and “Sirface & Interface Rnalysis Journal

Thesedocum_om.smuslberomnd!oNASA:' Qq tional Affairs Division for spproval. (See Section Vil)}
). AVAILABILITY CATEGORY X
Check the appropriate category(ies). /[/ _ ¥ //’
Security Classification: (] Secret O Secret RO (] Confidential O Confidential RD m iassified / o
ExporlComvolledDocumem-Docunmm«mﬁadhmuoﬂmb.mnNASA:' dquarters internati | Aftairs Division for approval.
QAR OEAR P)(o, T,
NASA Restricted Distribution Document o~ S /
OFEDD (3 Limited Distribution O Special Conditions-See Section Ee
[Z]Dowmmsmﬂwdinthisbbdrmudb-mhddlrm h untit six ths have slapeed after ion of this form, uniess a different releass
date is ished by the appropri counsel. (See Section 1X).
Publicly Available Document
HP\M&:N iable d s mwust be unch mmmmumwummw.

O Copyrighted (1 Not copyrighted

Hil. SPECIAL CONDITIONS ‘
Checkz:a'\eormorommea(.)pﬁcab‘ebmmsinaacﬂof(l)am:l(b)as!hcbu&sk)fr ial icted tion it the "Sp ia) Conditions” box under NASA
Restricied Distribution Document in S: ion I is checked. G i are provided on side of form.
a. This document contains:
[Foreign government information ac ial product 183t of evaluation resuits O Preliminary inlormation [m] b sbject 10 special contract provision
{1 Other —Specity
b. Check one of the following limitations as appropriate:
[U.S. Government agencies and U.S. Go gency s only [NASA contractors and U.S. Government agencies only D U.S. Government agencies only
DNASApe«sonndandNASAoomvmo'w {3 NASA personnet only O Available only with spproval of ing office;

IV. BLANKET RELEASE (OPTIONAL) ...

All documents issued under the following grant/proj b o - " maybe p o as checked in Sectons Hand L " 7
The blanket release authorization g d is:
Date
[Rescinded - Future documents must have indivdual iability authorizations. O Modified - Limi toc ait d s p d in the STI sysiem under the blanket

should be _‘mmmtouoeksnsmekodh&dmll.

v. PROJECT OFFICER/TECHNICAL MONITOR i
Stephen V. Pepper 5100 .
Typed Name of Project Ofticer/Technical Monitor Office Code Signal e

e Tl N ¥ |

Typed Name of Program Oftice Representative Program Office and Code Signature e

Vii. INTERNATIONAL AFFAIRS DIVISION REVIEW
O Open, d tic Cof [ion approved. O Export tation is not applicab
0 Foreign publicatior/presentation approved. 0O The ing Export d hmitation (ITAR/EAR) is assigned 10 this

J Export controlled limitation is approved.

International Affairs Div. Representative : Title Date

VI, EXPIRATION OF REVIEW TIME

The document is being released in accordance with the ilability gory and kmitation Kked in Section Il since no objection was received from the Program

Office within 20 days of submission, as spacified by NHB 2200.2, and app: | by the Imternational Affairs Division is not required.

Name & Title Oftice Code Date
Note: This release procedure cannot be used with documents designated as Export C led D cont pr or foreign o

IX. DOCUMENTS DISCLOSING AN INVENTION

a. This document may be d on 5 ! Pateni of Intelieciual Propecty Counsel Oate
ate

b. The document was processedon . ——— in accordance with Sections 1l and Il as applicable. NASA STI Facility Date
Date

X DISPOSITION

Completed torms should be lorwarded 10 the NASA Scientitic and Technical
Information Facliity, P.O. Box 8757, B.W.1. Alrport, Maryland 21240, with
enher {check box)

{1 Printed or reproducible copy of document enclosed

1] Abstract or Report Documentation Page enclosed. The ssuing of sponsoring NASA instaliation shoutd provide a copy of the document, when complate,
o i, e, v m amd Tamhmimal lndacmatian Eacdity at the abnva hstad address

